Boolean Curve Fitting with the Aid of Variable-Entered Karnaugh Maps
نویسندگان
چکیده
منابع مشابه
Efficient Solution of Boolean Equations Using Variable-Entered Karnaugh Maps
A new method for obtaining a compact subsumptive general solution of a system of Boolean equations is presented. The method relies on the use of the variable-entered Karnaugh map (VEKM) to achieve successive elimination through successive map folding. It also makes an artificial distinction between don’t-care and can’t-happen conditions. Therefore, it is highly efficient as it requires the cons...
متن کاملPrime-Implicant Extraction with the Aid of the Variable-Entered Karnaugh Map
تايوتحملا ةريغتم هونراك ةطيرخ دعت ) ح غ ك خ ( ةـيريوصت اـيازم تاذ ةلاعف ةيودي ةادأ طسوتملا مجحلا تاوذ نم ةديدع تاقيبطت تاذو ةريثك ةيميلعتو . ءارـجإ هذـه ثحبلا ةقرو مدقت اركتبم لوصحلل ةطيرخلا هذه مدختسي ىلع عيمج تانماضلا ةيلولأا ) قاقتـشا مـث نـمو لماكلا عومجملا ( ديدحتلا ةلماك ريغ ةينلاوب ةلادل g ∨ d(h) . ةطيرخ لامعتساب ءارجلإا اذه أدبي ةـلادلل ةـيعرفلا ةلادلا لثمي لماك عومجم ةروص يف اهيف ...
متن کاملPropagation Models and Fitting Them for the Boolean Random Sets
In order to study the relationship between random Boolean sets and some explanatory variables, this paper introduces a Propagation model. This model can be applied when corresponding Poisson process of the Boolean model is related to explanatory variables and the random grains are not affected by these variables. An approximation for the likelihood is used to find pseudo-maximum likelihood esti...
متن کاملModified Karnaugh Map for Quantum Boolean Circuits Construction
Abstrnd-Karnaugh map is an efficient method of minimization for conventional logic design. Unfortunately, it is usually used for 3 or 4 variables, at most 6 variables. In this paper, we modify the Karnaugh map and propose a set of reduction rules for quantum Boolean circuit optimization. By applying these rules, we can efficiently simplify a quantum Boolean circuit that has an arbitrary number ...
متن کاملCurve Fitting with Bézier Cubics
1. An image’s outline cannot be fitted by a single cubic Bézier curve piece if it contains corners. Corners are points In this paper, a new curve-fitting algorithm is presented. This algorithm can automatically fit a set of data points with at which the outline’s directions take a sharp turn, or the piecewise geometrically continuous (G) cubic Bézier curves. outlines have discontinuous tangent ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Mathematical, Engineering and Management Sciences
سال: 2019
ISSN: 2455-7749
DOI: 10.33889/ijmems.2019.4.6-102